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Did you know?
Over the real numbers, 

non-linear arithmetic is...

decidable



We can decide statements 
involving +, −, ×!

And that can be harnessed to 
prove statements involving

sin, cos, exp, ln, …!!



MetiTarski: a resolution theorem 
prover for the real numbers
✤ proves first-order statements 

involving functions such as exp, 
ln, sin, cos, tan-1, …

✤ using axioms bounding these 
functions by rational functions

✤ … and heuristics to isolate and 
remove function occurrences 

✤ integrated with the RCF* 
decision procedures QEPCAD, 
Mathematica, Z3

*RCF (real-closed field):  any field that’s 
“first-order” equivalent to the reals
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some theorems that MetiTarski 
can prove
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Each is proved in 
a few seconds!



✤ Tarski (1948): every first-order RCF formula can be 
replaced by an equivalent, quantifier-free one.

✤ Quantifier elimination implies the decidability of RCF 

✤ … and also the decidability of Euclidean geometry.

What about the 
decidability of 

real arithmetic?



real quantifier elimination: a well-
known example

The equivalent quantifier-free formula 
can be messy…



real QE is expensive!

✤ Tarski’s algorithm has non-elementary complexity! There are usable 
algorithms by Cohen, Hörmander, etc.

✤ The key approach: cylindrical algebraic decomposition (Collins, 1975)

✤ But quantifier elimination can yield a huge quantifier-free formula

✤ ... doubly exponential in the number of quantifiers (Davenport and 
Heintz, 1988)

No efficient algorithm can exist. Do we give up? 
Of course not...



let’s combine real QE with 
theorem proving
✤ To prove statements involving 

real-valued special functions.

✤ This theorem-proving approach 
delivers machine-verifiable 
evidence to justify its claims.

✤ Based on heuristics, it often 
finds proofs—but with no 
assurance of getting an answer.

✤ Real QE will be called as a 
decision procedure.

automatic 
theorem 
prover

real QE

axioms about 
special functions



✤ High complexity does not imply uselessness—as with the 
boolean satisfiability (SAT) problem

✤ … or higher-order unification, the (semi-decidable) basis of 
Isabelle.

✤ This is fundamental research. Theorem proving for real-valued 
functions has been largely unexplored.

 Given the cost of real 
QE, isn’t this stupid?



the basic idea

Our approach involves 
replacing functions by rational 
function upper or lower bounds.

We end up with polynomial 
inequalities: in other words, 
RCF problems

Real QE and resolution theorem proving 
are the core technologies.

... and first-order formulae 
involving +, −, × and ≤ (on 
reals) are decidable.



a simple proof: 

negating the claim

absolute value

absolute value

lower bound: 1-c ≤ e-c 

lower bound: 1+c ≤ ec

absolute value

0 ≤ c ⇒ 1 ≤ ec

absolute value, etc.



the key to the integration: 
algebraic literal deletion

✤ A list of RCF clauses (algebraic, with no variables) is maintained.

✤ Every literal of each new clause is examined.

✤ A literal will be deleted if—according to the decision procedure—it is 
inconsistent with its context.

✤ MetiTarski also uses the decision procedure to detect redundant 
clauses (those whose algebraic part is deducible from known facts).



examples of literal deletion

✤ Unsatisfiable literals such as p2 < 0 are deleted.

✤ If x(y+1) > 1 has previously been deduced, then x=0 will be deleted.

✤ The context includes the negations of adjacent literals in the clause: 
z > 5 is deleted from z2 > 3 ∨ z > 5

✤ …  because quantifier elimination reduces ∃z [z2 ≤ 3 ∧ z > 5] to FALSE.



some bounds for ln

✤ based on the continued 
fraction for ln(x+1)

✤ much more accurate than 
the Taylor expansion

✤ Simplicity can be 
exchanged for accuracy.

✤ With these, the maximum 
degree we use is 8.



bounds for other functions

✤ a mix of continued fraction approximants and truncated Taylor series, 
etc, modified to suit various argument ranges and accuracies

✤ a tiny bit of built-in knowledge about signs, for example, exp(x) > 0

✤ NO fundamental mathematical knowledge, for example, the geometric 
interpretation of trigonometric functions

✤ MetiTarski can reason about any function that has well-behaved upper 
and lower bounds as rational functions.

Have these bounds been proved 
correct? Some have, some haven’t.



introducing the RCF solvers

QEPCAD (Hoon Hong, C. W. Brown et al.)
Venerable. Very fast for univariate problems.

Mathematica (Wolfram research)
Much faster than QEPCAD for 3–4 variables

Z3 (de Moura, Microsoft Research)
An SMT solver with non-linear reasoning.



statistics about the RCF problems

✤ 400,000 RCF problems generated from 859 MetiTarski problems.

✤ Number of symbols: in some cases,  11,000 or more!

✤ Maximum degree: up to 460!

✤ But… number of variables? Typically just 1. Very few above 8.



distribution of problem sizes 
(in symbols)
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distribution of polynomial degrees 
(multivariate)
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a heuristic: model sharing

✤ MetiTarski applies QE only to existential formulas, ∃x ∃y … 

✤ Many of these turn out to be satisfiable,…

✤ and many satisfiable formulas have the same model.

✤ By maintaining a list of “successful” models, we can show many RCF 
formulas to be satisfiable without performing QE.



… because most of our RCF 
problems are satisfiable...

nothing to MetiTarski’s proof. Such results are typical. Table 1 analyses ten rep-
resentative problems. For each, it displays the e↵ort (in terms of the number of
RCF problems and the time taken deciding them), followed by the subset of this
e↵ort that is wasted on satisfiable problems and finally the percentage of wasted
e↵ort, again in terms of the number of problems and the time taken. We list the
contents of these problems in Table 2. Clearly, quick methods for identifying and
discarding satisfiable RCF subproblems could greatly improve performance.

Table 1. RCF Subproblem Analysis for Ten Typical Benchmarks

Problem All RCF SAT RCF % SAT

# secs # secs # secs

CONVOI2-sincos 268 3.28 194 2.58 72% 79%

exp-problem-9 1213 6.25 731 4.11 60% 66%

log-fun-ineq-e-weak 496 31.50 323 20.60 65% 65%

max-sin-2 2776 253.33 2,221 185.28 80% 73%

sin-3425b 118 39.28 72 14.71 61% 37%

sqrt-problem-13-sqrt3 2031 22.90 1403 17.09 69% 75%

tan-1-1var-weak 817 19.5 458 7.60 56% 39%

trig-squared3 742 32.92 549 20.66 74% 63%

trig-squared4 847 45.29 637 20.78 75% 46%

trigpoly-3514-2 1070 17.66 934 14.85 87% 84%

Now, given our previous discussions, it is natural to ask the following: How
many of these satisfiable RCF subproblems share models with each other? Ob-
taining an exact answer to this question is certainly computationally infeasible.
However, we can obtain a lower bound. We will do this in the following simple
way: Whenever the RCF procedure decides a formula to be satisfiable, we will
ask it to report to us a model satisfying the formula, and we will store this model
within a model history data-structure in MetiTarski. Note that these models may
in general contain irrational real algebraic points. Whenever we encounter a new
RCF subproblem, we will first check, within MetiTarski, whether this RCF sub-
problem is satisfied by any rational model we have recorded within the model
history.

Performing this experiment, we see that at least 2,172 of the 2,221 satisfiable
RCF subproblems share a common model with a previously generated SAT RCF
subproblem. Moreover, only 37 separate rational models were used to satisfy all
of these 2,172 formulas. Note that these numbers are very much lower bounds,
as we (i) only consider the particular models previously recorded (i.e., perhaps
Fi and Fi+k share a model, but this common model is di↵erent than the one we
have recorded for Fi), and (ii) we have only considered common rational models.

In Table 3, we show this type of model sharing analysis for the same collection
of ten benchmark problems encountered previously. For each MetiTarski prob-

In one example, 2172 of 2221 satisfiable RCF problems can be 
settled using model sharing, with only 37 separate models.



introducing Strategy 1

model sharing
omitting the 

standard test for 
irreducibility+

= Strategy 1



comparative results
(% proved in up to 120 secs)
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Strategy 1 finds the fastest proofs

# of thms proved at least 
10% faster than with any 
other QE tool
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a collision avoidance problem

✤ two aircraft, x and y, flying in 
two dimensions (for simplicity)

✤ studied by Platzer (2010), using 
KeYmaera

✤ MetiTarski treatment due to 
W. Denman, using closed-form 
solutions of the differential 
equations of motion



The system of differential 
equations for aircraft x

BRIEF ARTICLE

THE AUTHOR

x

0
1(t) = d1(t) x

0
2(t) = d2(t) d

0
1(t) = �!d2(t) d

0
2(t) = !d1(t)

x1(0) = x1,0 x2(0) = x2,0 d1(0) = d1,0 d2(0) = d2,0

x1(t) = x1,0 + d2,0 cos (!t) + d1,0 sin (!t) � d2,0

!

x2(t) = x2,0 � d1,0 cos (!t) � d2,0 sin (!t) � d1,0

!

(x1(t) � y1(t))
2 + (x2(t) � y2(t))

2 > p

2

1

x1 denotes position in the first coordinate; 
d1 denotes velocity

x2 denotes position in the second coordinate; 
d2 denotes velocity



… and the closed-form solution
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possible paths of the two aircraft



the desired safety property

Two aircraft following those equations…

subject to certain other parameters…

must maintain a safe distance, p:
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THE AUTHOR
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1(t) = d1(t) x

0
2(t) = d2(t) d

0
1(t) = �!d2(t) d

0
2(t) = !d1(t)

x1(0) = x1,0 x2(0) = x2,0 d1(0) = d1,0 d2(0) = d2,0

x1(t) = x1,0 + d2,0 cos (!t) + d1,0 sin (!t) � d2,0
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x2(t) = x2,0 � d1,0 cos (!t) � d2,0 sin (!t) � d1,0
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the resulting MetiTarski problem
2 THE AUTHOR

fof(airplane_easy,conjecture,

(! [T,X10,X20,Y10,Y20,D10,D20,E10,E20] :

(

( 0 < T & T < 10 & X10 < -9 & X20 < -1 & Y10 > 10 & Y20 > 10 &

0.1 < D10 & D10 < 0.15 & 0.1 < D20 & D20 < 0.15 &

0.1 < E10 & E10 < 0.15 & 0.1 < E20 & E20 < 0.15 )

=>

( (X10 - Y10 - 100

*

D20 - 100

*

E20 + (100

*

D20 + 100

*

E20)

*

cos(0.01

*

T)

+ (100

*

D10 - 100

*

E10)

*

sin(0.01

*

T))ˆ2 +

(X20 - Y20 + 100

*

D10 + 100

*

E10 + (-100

*

D10 - 100

*

E10)

*

cos(0.01

*

T)

+ (100

*

D20 - 100

*

E20)

*

sin(0.01

*

T))ˆ2 )

> 2 )

)

).

include(’Axioms/general.ax’).

include(’Axioms/sin.ax’).

include(’Axioms/cos.ax’).



remarks about this proof

✤ 9 variables!

✤ originally required 924 seconds (using Z3)

✤ can take as little as 30 seconds, depending on configuration



other possible applications

✤ hybrid systems, especially those involving transcendental functions

✤ showing stability of dynamical systems using Lyapunov functions

✤ real error analysis…?

✤ any application involving ad hoc real inequalities

We are still looking... 



inherent limitations

✤ Only non-sharp inequalities can be proved.

✤ Few MetiTarski proofs are mathematically elegant.

✤ Problems involving nested function calls can be very difficult.



research challenges

✤ Real QE is still much too slow!
It’s usually a serious bottleneck.

✤ We need to handle many more 
variables!

✤ Upper/lower bounds 
sometimes need scaling or 
argument reduction: how?

✤ How can we set the numerous 
options offered by RCF solvers?

3
2

0 or 1 variables

4+



conclusions

✤ MetiTarski really works on some very hard problems!

✤ We are continually working on both improvements and applications.

✤ Performance (especially of real QE) remains a challenge.

✤ Our main goal: to handle problems involving more variables.
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